
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2983
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Comparative Analysis of Software Complexity of

Searching Algorithms Using Code Based Metrics

Olabiyisi S.O1, Omidiora E. O2 and Sotonwa K. A3

Department of Computer Science and Engineering Ladoke Akintola
University of Technology P. M.B. 4000, Ogbomoso, Nigeria.

1. soolabiyisi@lautech.edu.ng
2. eoomidiora@lautech.edu.ng
3. kehindesotonwa@yahoo.com

Abstract:Software complexity metrics are used to quantify a variety of software properties. Complexity measures can be used to predict critical
information about testability, reliability and maintainability of the software systems from automatic analysis of the source code. In this paper different
software complexity metrics were applied to searching algorithms, our intention is to compare software complexity of linear and binary search
algorithms, evaluate, rank competitive object oriented applications (Visual Basic, C#, C++ and Java languages) of these two algorithms using code
based complexity metrics such as (line of codes, McCabe cylomatic complexity metrics and Halstead complexity metrics) and measured the sample
programs using length (in lines) of the program, line of code (LOC) without comments, LOC with comments, McCabe method, the program difficulty
using Halstead method. The result revealed that McCabe method has negligible values of complexity for Visual Basic, C#, C++ and Java
languages for linear search and similar measuring values for binary search and also from statistical analysis of ANOVA (Analysis of Variance) the
result showed that for both linear and binary search techniques, the four (4) languages do not differ significantly, therefore it is concluded that any
of the four (4) programming languages is good to code linear and binary search algorithms.

Index Terms – Software metrics, Searching Algorithms, Code Based Metrics, Length in line of the program, LOC with Comments, LOC without
Comments, McCabe method and Halstead method.

1. INTRODUCTION

The first problem encountered when attempting to

understand program complexity is to define what it

means for a program to be complex. Basili defines

complexity as a measure of the resources expended by

a system while interacting with a piece of software to

perform a given task. If the interacting system is a

computer, then complexity can be defined by the

execution time and storage required to perform the

computation. If the interacting system is a

programmer complexity is defined by the difficulty of

performing tasks such as coding, debugging, testing,

or modifying the software. The term software

complexity is often applied to the interaction between

a program and a programmer working on some

programming tasks [1].

Software complexity is defined as “the degree to

which a system or component has a design or

implementation that is difficult to understand and

verify [2] i.e. complexity of a code is directly

dependent on the understandability. All the factors

that make a program difficult to understand are

responsible for its complexity. Software complexity

also is an estimate of the amount of effort needed to

develop, understand or maintain the code and the

more complex the code is the higher the effort and

time needed to develop or maintain this code [3].

Results based on real life projects have shown that

there is a correlation between the complexity of a

system and the number of faults Munson and [4] and

[5].

IJSER

http://www.ijser.org/
mailto:soolabiyisi@lautech.edu.ng
mailto:eoomidiora@lautech.edu.ng
mailto:kehindesotonwa@yahoo.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2984
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

According to Webster’s New Dictionary of

Synonyms [6]: “Something is complex when it is made

up of so many different interrelated or interacting

parts of elements that it requires deep study or expert

knowledge to deal with it”. As stated above,

complexity has to do with the amount of resources

that is required to perform some activities. The more

resources that must be spent to achieve something, the

more complex of the entity with respect to this task

and the amount of resources used is not a sufficient

characteristic for classifying a task as complex which

means that complexity and length are different

characteristics of the task and the resources needed to

accomplish a task is a function of the size of the task

and its unit complexity. Of course complexity may

increase as a function of the size of the task but this

increase should normally be less than increase in size.

Since complexity is an attribute with many meanings

therefore, complexity also correlates strongly with the

length of a program.

Toularkis distinguished between two classes of

complexity measures namely, dynamic complexity

measure and static complexity measure. Dynamic

complexity measure measures the amount of

resources consumed during computation and static

complexity measure measures the size (e. g program

length) or structural complexity (e.g. level of nesting

do loop) of an algorithm description [7].

2. LITERATURE REVIEW

2.1 Complexity Concepts

 For information system, especially for software, the

word complexity was first used for what is called

computational or time complexity. As an example the

task of searching a sorted list of length ‘n’ for a single

item has complexity O(log n) meaning that any

logarithm giving a solution to the task will in the

worst case need the order log n pair wise comparisons

to solve the task for large ‘n’. The task to sort such a

list has computational complexity O(nlogn) and is

thus a more complex task. These complexities

characterize the class of problems to be solved and

give the least possible growth in computation times as

a function of the growth in problem size. In addition

to this each method designed to solve problems

belonging to some class has its own complexity which

of course cannot be less than the complexity of the

corresponding problem class.

Complexity has also been used to characterize

software. According to [8] complexity “relates to data

set relationship, data structures, data flow and the

algorithm being implemented” and “measures the

degree of decision making logic within the system.

Beizer states that ‘using only our intuitive notion of

software complexity, we expect that more complex

software will cost more to build and test and will have

more latent bugs’ [9]. Software complexity is defined

as the degree of difficulty in analysis, testing, design

and implementation of software. Not attempting to

attach a single number to software complexity [8]. In

[9], Jones discussion on measuring programming

complexity identifies ‘two logically distinct tasks:

(i) Measuring complexity of the problem, i.e. the

functions and data to be programmed;

(ii) Measuring the complexity of the solution of

the problem, i.e. the software itself.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2985
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Complexity is a metaphysical property and thus

not directly measurable that is, it required the linkage

behaviour of the product characteristics that are

measurable [10]. Banker, Datar and Zweig [11] states

that ‘software complexity refers to the extent to which

a system is difficult to comprehend, modify and test,

not to the complexity of the task which the system is

meant to perform; two systems equivalent in

functionality can differ greatly in their software

complexity’. They noticed that most complexity

metrics proposed to confound to the complexity of a

program with its length. They also propose to measure

length-independent complexity metrics by measuring

‘density of decision making’ and ‘density of

branching’ within a program. In a high correlation of

cyclomatic complexity with lines of codes given as

reason for proposing a transformed metric ‘complexity

density’ is defined as the ratio of cyclomatic

complexity to thousand lines of code [12].

Zuse [6] agreed with Ramamoorthy and Shepperd

that the term software complexity is still not well

defined. Here the term complexity measure is a

misnomer. It deals with the psychological complexity

of programs. The overall complexity of software is a

function of many factors. In literature we can find

many types of measures, for example process

measures, product measures, resource measures, static

measures, descriptive measure, black-box measures,

quality measures, code measures, design measures,

inter-intra-modular measures, data flow measures,

information flow measures and specification

measures. The complexity of a module or a program

system is influenced by the factors of cohesion,

coupling, decomposition and intra-modular

complexity. It can be said that the measurement of

complexity is synonymous with determining the

degree of difficulty in analyzing, maintaining, testing,

designing and modifying software.

The term complexity is commonly used to capture

the totality of all internal attributes of software. When

people talk of the need to control complexity what

they really meant is the need to measure and control a

number of internal (structural) product attributes.

Fenton stated that ‘there appears to be three distinct

(orthogonal and fundamental) attributes of the

software such as length, functionality and complexity

of the underlying problem which the software is

solving’ [13].

2.2 Lines of Code (LOC)

The line of codes (LOC) is generally considered as

the count of the lines in the source code of the

software. Usually, (LOC) only considers the

executable sentence. LOC is independent of what

program language used. The LOC evaluates the

complexity of the software via the physical length.

LOC is based upon two rules:

i. the relationship between the count of code

lines and the bug density,

ii. the independence between the bug density

and the program language.

Also sometimes, the LOC is estimated by the other

factors [14]. The original purpose of its development

was to estimate man-hours for a project [15]. Some

types of LOC are as follows:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2986
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

i. Lines of Code (LOC): It is obvious from its

name that it counts the number of lines which

are uncommented in source code. Some

developers write code statement and

comment on a same physical line. In such

cases this metric can be further defined easily.

ii. Kilo Lines of Code (KLOC): it is LOC divided

by 1000.

iii. Effective Lines of Code (ELOC): It only counts

the lines that are not commented, blank,

standalone braces or parenthesis. In a way

this metric presents the actual work

performed.

iv. Logical Lines of Code (LLOC): This metric

shows the count of logical statements in a

program, it only counts the statements which

end at semi-colon. This definition of metric is

only applicable for languages like C or Java,

but for languages like Haskell this metric

won't work

v. Multiple Line of codes (MLOC): It contains

several separate instructions, multiple line of

code like million lines of code.

2.3 Halstead Complexity Metric

Halstead introduced the concept of software

science and use scientific methods to analyze the

characteristics and structure of the software. The idea

resulted in the introduction of the Halstead

complexity metric (HCM). The HCM is calculated on

the count of the operators and operands16]. The

operators are symbols used in the expressions to

specify the manipulations to be performed. The

operands are the basic logic unit to be operated. The

HCM measures the logic volume of the software.

Firstly, the HCM compute the following parameters:

μ1= the number of unique operators

μ2= the number of unique operands

N1 = the total occurrences of operators

N2= the total occurrences of operands

P = the program

From these statements, some indicators can be

calculated

The length N of P: N = N1+ N2 (2.1)

The vocabulary μ of P: μ = μ1+ μ2 (2.2)

The volume V of P: V =N * log2 (μ) (2.3)

The level L of P: L = (2 ÷ μ1) * (μ2 ÷ N2) (2.4)

The program difficulty D of P: D =

(μ1 ÷ 2) * (N2 ÷ μ2) (2.5)

The effort E to generate P is calculated as:

E = D * V (2.6)

Error Estimate: B= V/X* (2.7)

Programming Time: T= E/18 (2.8)

Number of Delivered Bugs: B = E (2/3) / 3000

The V* is the software’s ideal volume.

This formula is commonly used: V*= (μ1N2 ÷ 2μ2)

(N1+N2) log2 (μ1+ μ2)

To estimate the V* the X* means the programmer’s

ability. Halstead sets X* for a fixed value of 3000.

2.4 McCabe Cyclomatic Complexity Metric

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2987
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Based upon the topological structure of the

software, Thomas J. McCabe introduced a software

complexity metric named McCabe Cyclomatic

Complexity Metric. As described by McCabe, the

primary purpose of the measure is to identify software

modules that will be difficult to test or maintain [17].

The nodes correspond to the code lines of the

software, and a directed edge connects two nodes if

the second node might be executed immediately after

the first one. If the conditional evaluation expression is

composite, the expression is broken down

MC = V (G) = e –n + 2p

 (2.11)

where:

V(G) is the cyclomatic complexity

e is the number of edges of the graph

n is the number of nodes of the graph and

p is the number of connected components.

3. MATERIALS AND METHODS

The metrics were applied on searching algorithms

codes written Visual Basic, C#, C++ and Java

languages. Eight (8) different types of searching

algorithms codes were considered. These programs

were different in their architecture.

3.1 Evaluation of Software Complexity of

Searching Algorithms

To find the complexity of variations of different

implementation languages. The following approaches

were applied:

i. Length in line of the program: counts every

line of the program including comments,

standalone brace, blank lines and parenthesis.

ii. LOC without comments: counts line of codes

that do not contain comments

iii. LOC with comments: counts line of codes that

contain comments.

iv. McCabe method: using cyclomatic complexity

method MC = V(G) = e – n + 2p

v. Program difficulty: using Halstead method D

of P is D = (µ1 ÷2) * (N2 ÷ µ2)

 The evaluation of code based metrics for linear

search algorithms and binary search algorithm were

given in Tables 1 and 2. It was discovered that visual

basic has the lowest value of complexity for all the

variations of different implementation except for LOC

with comment and McCabe method that has highest

values for both linear and binary search

algorithms.This is due to the language that lacks a

keyword to directly implement one of the steps and

the implementation of the step leads to an increase in

the number of steps require to implement the

algorithm.

Table 1: Comparison of the Metrics for Linear
Search Algorithms

Complexities Values

 Length

in Lines

LOC with

Comments

LOC

without

Comments

McCabe

Methods

Program

Difficulty

VB 37 6 29 11 16.1

C# 50 4 44 11 25.4

C++ 51 4 42 11 32

Java 54 5 43 9 21.6

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2988
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table 2: Comparison of the Metrics for Binary Search
Algorithms

Complexities Values

 Length

in Lines

LOC with

Comments

LOC

without

Comments

McCabe

Methods

Program

Difficulty

VB 54 6 46 12 25.8

C# 75 9 63 12 43.9

C++ 76 2 68 12 48.1

Java 77 9 62 11 35.5

3.2 Statistical Analysis

Statistical analysis was carried using Analysis of

Variance (ANOVA) which is a rigorous statistical tool

used in making inferential decisions in experimental

design studies to ensure the equivalence of

comparative groups even when number per group

differed across the group. Therefore statistical analysis

carried out using ANOVA at 0.01 levels significant for

values obtained for linear search and binary search

techniques.

Tables 3 and 4 show the Analysis of Variance

(ANOVA) table for linear search and binary search

and it is discovered that F0.01, 3, 12 = 5.95 > Fcalculated, since

the Ftable exceeds the Fcalculatedfor both linear and binary

search we accept the null hypothesis Ho, therefore is

significant relationship between the metrics and the

programming languages for linear and binary search

techniques.

Table 3: Analysis of Variance for Linear Search

Sources
of Error

Sum of
Squares

Variance
Estimate

DF F

Between
Groups

SSb
(283.23)

Sb2
(94.41)

3 0.3235

Within
Groups

SSw
(3502.55)

Sw2
(291.88)

12

Total 3785.78 362.69 15

Table 4: Analysis of Variance Binary Search

Sources
of Error

Sum of
Squares

Variance
Estimate

DF F

Between
Groups

SSb
(646.16)

Sb2
(215.39)

3 0.3093

Within
Groups

SSw
(8355.44)

Sw2
(696.29)

12

Total 9001.6 857.83 15

4. RESULTS AND DISCUSSIONS

4.1 Complexity of Different Implementation of

Linear Search

As shown in Figure 1 there are considerable

differences among the implementation complexities of

the different languages. The Figure shows the

comparison between the object oriented languages of

Visual Basic, C#, C++ and Java languages by using

linear search as a case study for comparison. The

Figure reveals that the length (in lines) of the program

of Visual Basic, C# and C++ languages are less than

that of Java language in this case Visual Basic, C# and

C++ have less complexity than Java, the LOC without

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2989
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

comments of Visual Basic, C++ and Java are less than

that of C# therefore Visual Basic, C++ and Java have

less complexity than C# and the LOC with comments

of C#, C++ and Java are less than that of Visual Basic

then C#, C++ and Java have less complexity than

Visual Basic.

The McCabe method of Java language is less than

that of Visual Basic, C# and C++ therefore Java

language has less complexity than Visual Basic, C#

and C++ because if the implementations are based on

the same number of steps and decision points and that

is why they have the same value for cyclomatic

complexity, the program difficulty using Halstead

method for Visual Basic, C# and Java are less than that

of C++, therefore Visual Basic, C# and Java have less

complexity than C++.

60

50

40

30

20

10

0
Length of LOC without LOC with McCabe Program
Programs Comments Comments ComplexityDifficulty

Visual Basic C# C++ Java

Fig 1: Complexity Comparison between the Object Oriented
Languages VB, C#, C++ and Java for Linear Search Algorithm

4.2 Complexity of Different Implementation of

Binary Search

As shown in Figure 4.2 there are considerable

differences among the implementation complexities of

the different languages. The Figure shows the

comparison between the object oriented languages of

Visual Basic, C#, C++ and Java by using binary search

as a case study for comparison. The Figure reveals that

the length (in lines) of the program of Visual Basic, C#

and C++ languages are less than Java language in this

case Visual Basic, C# and C++ have less complexity

than Java, the LOC without comments of Visual Basic,

C# and Java are less than that of C++ therefore Visual

Basic, C# and Java have less complexity than C++ and

LOC with comments of Visual Basic and C++ are less

than that of C# and Java, then Visual Basic and C++

have less complexity than C# and Java.

The McCabe method of Java is less than that of

Visual Basic, C# and C++ because if the

implementations are based on the same number of

steps or decision points their cyclomatic complexity

will be the same that is why Visual Basic, C and C++

have the same McCabe method and that of Java has

less complexity, the program difficulty of Visual Basic,

C# and Java are less than that of C++, in this case

Visual Basic, C# and Java have less complexity than

C++.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2990
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

80

70

60

50

40

30

20

10
 Length of LOC without LOC with McCabe Program
 Program Comments Comments Complexity Difficulty

Visual Basic C# C++ Java

Fig 2: Complexity Comparison between the Object Oriented
LanguageVB, C#, C++ and Java for the Binary Search
Algorithm

4.3 Comparison between McCabe Method and

Halstead Methods for Linear Search

Figures 3 and 4 are showing the differences

between McCabe and Halstead measurement for

linear search and binary search for the (4) four

languages. In Figure 3 it is discovered that the

differences between the values for McCabe complexity

are negligible while that of Halstead method show

remarkable differences with C++ language is having

the highest value and Visual Basic language having

the lowest value.

40

30

20

10

 0
 Visual Basic C# C++ Java

 McCabe Method Halstead Method

Fig 3: Comparison of McCabe Method and Halstead
Method for Linear Search

4.4 Comparison between McCabe Method and

Halstead Methods for Binary Search

Also in Figure 4, it is discovered that the

differences between the values for McCabe complexity

are negligible while that of Halstead method show

remarkable differences with C++ language is having

the highest value and Visual Basic language having

the lowest value.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2991
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

50

40

30

20

10

0

 Visual Basic C# C++ Java

 McCabe Method Halstead Method

Fig 4: Comparison of McCabe Method and Halstead

Method for Binary Search

4.5 Comparison between Program Length and McCabe
Methods for Linear Search

Figures 5 and 6 are showing the differences

between program length and McCabe measurement

for linear and binary search for the (4) four object

oriented languages. In Figure 4.5 it is discovered that

the program length of Visual Basic, C# and C++ are

less than that of Java, in this case it can be predicted

that Visual Basic, C# and C++ have less complexity

than Java and the complexity are negligible.

60

40

20

0

 Visual Basic C# C++ Java

 McCabe Method Program Length

Fig 5: Comparison of Program Length and McCabe

Method for Linear Search

4.6 Comparison between Program Length and

McCabe Methods for Binary Search

Also Figure 6 shows that the program length of

Visual Basic, C# and C++ are less than Java, therefore

languages with less number of keywords expected to

be more complex and needs more access time

compared with the language that has more keywords

which is demonstrated among the four languages in

Figure 4.6 therefore this can be used as a second pre

indicator for programs complexity.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2992
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 80

 60

 40

 20

 0

 Visual Basic C# C++ Java

 McCabe Method Program Length

Fig 6: Comparison of Program Length and McCabe

Method for Binary Search

5. CONCLUSION

It was found that McCabe method has negligible

values of complexity for Visual Basic, C#, C++ and

Java for linear search, the value of Java language was

nine (9) and similar measuring value for Visual Basic,

C#, C++ and Java for binary search, the value of Java

language was eleven (11). The measured complexity

with McCabe method is higher for Visual Basic, C#

and C++ in binary search. Further result from

statistical analysis of Analysis of Variance (ANOVA)

showed that for both linear and binary search

techniques the four (4) languages do not differ

significantly. Therefore, it is concluded that any of the

four (4) programming languages is good to code linear

search and binary search algorithms.

REFERNCES

[1] Basil, V.R (1980): Quantitative Software
Complexity Models: A Summary in Tutorial on
Models and Methods for Software.

[2] IEEE Standard 1998): Volume: 1998, Issue: IEEE-
std-1061-1998, Publisher: IEEE Computer
Science: 278-278

[3] Li and Henry (1993): Object Oriented Metrics
that Predict Maintainability, Journal of Systems
and Software, 23(2): 111-122

[4] Munson J. and Khoshgoftaar T. (1996): Software
Metrics for Reliability Assessment", in Handbook
of Software Reliability Engineering, Michael Lyu
(edt.), McGraw-Hill, Chapter 12: 493-529.

[5] Ammar H. H., Nikzadeh T. and Dugan J. (1997):
A Methodology for Risk Assessment of
Functional Specification of Software Systems
Using Colored Petri Nets", Proc. Of the Fourth
International Software Metrics Symposium,
Metrics'97, Albuquerque, New Mexico: 108-117.

[6] Zuse H. (1991): Software Complexity: Measures
and Methods: 605, 498figures. Berlin, New York:
DeGruyter.

[7] Tourlakis G. J. (1984): Computability, Reston,
Virginia. 12: 39-42.

[8] McCall J.A., Richards P.K. and Walters G.F.
(1977): Factors in Software Quality, I-III,
 Rome Air Development Centre, Italy.

[9] Beizer B. (1984): Software System Testing and
Quality Assurance, Van Nostrand Reinhold,
 New York.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2993
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[10] Ramamoorth, C.V., Tsai W.T., Yamura T. and
Bhide A. (1985): Metrics Guided Methodology,
 COMPSAC 85: 111-120.

[11] Jones C. (1986): Programming Productivity,
McGraw Hill, New York.

[12] Shepperd M. (1988): An Evaluation of Software
Product Metrics, information and Software
Technology, 30(3): 177-188.

[13] Banker R.D., Datar, S.M. and Zweig D. (1989):
Software Complexity and Maintainability
CiteSeer Scientific Literature Digital Library
and Search Engine.

[14] Gill G.K. and Kemerer C.F. (1991): Cyclomatic
Complexity Density and Software Maintenance,
IEEE Trans. Software Engineering, 17: 1284-1288.

[15] Fenton N. E. (1992): Software Metrics – A
Rigorous Approach, Chapman & Hall, London
Computer Journal 29(4), 330 - 340.

[16] NASA (2008): Repository Overview,
http://mdp.ivv.nasa.gov/repository.html.

[17] Milutin A. (2009): "Software code metrics",
(Online: accessed on 2010-06-21 from
 Introduction to Algorithms).

[18] Halstead M. H. (1977): Elements of Software
Science, Operating and Programming Systems
Series, Elservier Computer Science Library North
Holland N. Y. Elsevier North-Holland, Inc.
ISBN 0-444-00205-7.

[19] McCabe T. (1976): “A Complexity Measure”. IEEE
Transactions on Software Engineering, 1: 312-
327.

IJSER

http://www.ijser.org/
http://mdp.ivv.nasa.gov/repository.html
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-444-00205-7

